

Year 11 Specialist Units 1,2 Test 6 2021

Calculator Free Complex Numbers, Mathematical Induction

STUDENT'S NAME							
DATE: Monday 20 September		ptember	TIME: 50 minutes	MARKS : 51			
INSTRUCTIONS: Standard Items: Pens, pencils, dra			ing templates, eraser, 1 A4 page of notes				
Ques	tions or parts of questio	ns worth more tha	an 2 marks require working to be shown to rece	ive full marks.			
1.	(4 marks)						
	If one root of a c $ax^2 + bx + c = 0$	_l uadratic equati	on is -2 + 5i, determine the quadratic e	quation in the form			

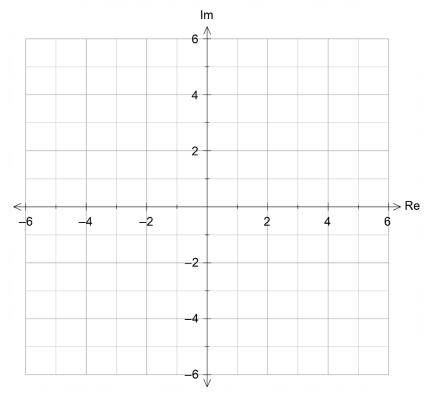
2	1	morlea)	
<i>Z</i> .	4	marks))

The sum of two number is -1 and the product of those numbers is 1. Determine the two numbers.

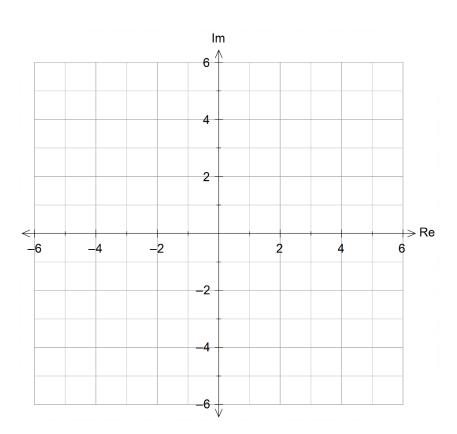
3. (6 marks)

Given z = 5 + 2i

(a) determine
$$z^2$$
 [2]


(b) determine
$$(\overline{z})^2$$
 [2]

(c) describe the relationship between
$$z^2$$
 and $(\overline{z})^2$ [2]


4. (5 marks)

For the complex number z, where z = x + iy

(a) Sketch
$$z - \overline{z} = 4i$$
 [3]

(b) Sketch Im z > 2 and Re $z \le 2$

[2]

5. (8 marks)

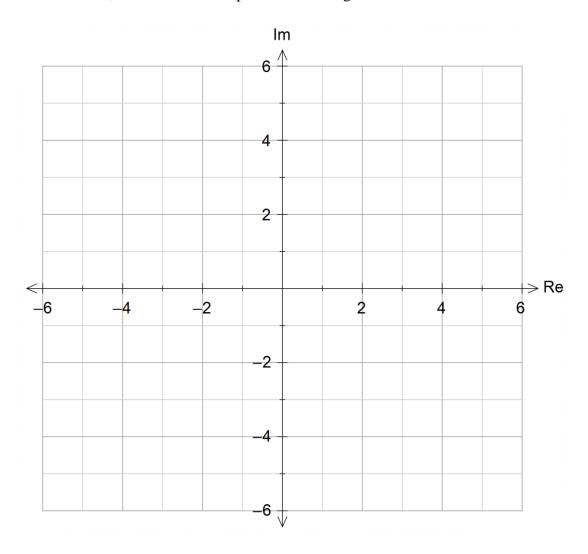
Determine the complex number z, in the form a+bi, if

(a)
$$(z-2)^2 + 3 = 0$$
 [4]

(b)
$$2z+3=i(\bar{z})-5$$
 [4]

6. (9 marks)

Given z = 2 - 5i and w = 1 + 6i, determine


(a)
$$iz + \overline{w}$$
 [3]

(b)
$$\frac{i}{w}$$
 [3]

(c)
$$\operatorname{Im}\left(\frac{z}{-i}\right)$$
 [3]

7. (8 marks)

If w = -2 + 3i, on the axes below plot the following.

(a)
$$wi^3$$
 [3]

(b)
$$|w|$$
 [2]

(c)
$$\frac{\overline{w}}{i^3}$$
 [3]

8. (7 marks)

Use mathematics induction to prove $n! > 2^n$ for n a positive integer greater than or equal to 4.